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In textbooks on thermodynamics the Maxwell relation: 

and Clapeyron’s equation; 

dP AS 

dT=iE 

are commonly arrived at from different points of views, and considered in different 
contexts. 

It is felt by the author, that by realizing the validity of the Maxwell relation for 
univariant systems, a more general way of attack can be advanced, in which 
CIapeyron’s equation is a special case of the Maxwell relation. 

INlRODUCTlON 

The thermodynamic systems, that we shall consider in the following, are 
closed systems with internal equilibrium, i.e., systems with equality in all the 
potentials T, P and P. 

For such systems we can write for the differential of the Helmholtz free energy 
A: 

dA = -SdT-PdV (1) 

This is an exact differential, and the Maxwell relation can be derived by 
differentiating A twice with respect to T and Y, and by recognizing that the order of 
differentiation is immaterial: 

(gv=($jT (2) 

In textbooks on thermodynamics this reIation (together with the ether three) is 
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o:Ren left zs it is, with relevance only to one-phase-systems having an equation of state: 

P=F(T,V) (3) 

By recognizing the validity of the Maxwell relation (2) for systems of but one 
degree of freedom, i.e., systems consistin, 0 of s- 1 components distributed among s 
phases, this equation can be made the starting point for the derivation of such 
important thermodynamic equations as the CIapeyron equation, the equation for 
the temperature dependence of the vapour pressure of saturated solutions, the 
temperature dependence of the equilibrium pressure for the Iarge group of equilibria 
like: 

A(sohd) s B (solid) f C(_eas) (4) 

and others_ 
We therefore state, that the Maxwell relation (2) is indeed valid for univariant 

systems, i.e., systems having an equation of state: 

P=F(T) 

and for these systems it should be written: 

(9 

dP as 
iiF= - ( > av -f (6) 

T-HE THERMODYXA?&lC EQL’ATXON OF STATE FOR UNVARLt~T SYSTEMS 

In the following we shah derive a general equation for &variant systems, by 
relating the right-hand side of eqn (6) to thermodynamic functions of the single 
phases_ 

Thus let us number the s- 1 components by the index i, and the s phases by the 
index j. R~ is the number of moles of phase j, and Xfj, Sij and Vii are the mole 
fraction, tie differential molar entropy and the differential molar volume of com- 
ponent i in phasej. The entropy S, and the volume Vi are defined according to: 

Sj=CSjj-Xfj 
f (7) 

vi =c &j-x, 
i 

The entropy and the volume of the whoIe system can be found by: 

S =CSj-~j 

i (8) 
V=c Vj-nj 

j 

In order to find the partial derivative (as/i? V& we consider a differential change 
of the system whereby the temperature T is kept constant_ 
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(9) 

The differentiak of S and Y are found by; 

dS =C Si.dnj 
/ 

dV = c V,-dnj 
i 

as all the dS,‘s and t&e dV]‘s are equal to zero by virtue of the constancy of the 
temperature. 

We now define a compositional matrix M (s x s): 

M= I 
Xl, . . . 

XZl .I. 

. . . 

I 
. . . 
X r-l.1 --- 
c c. . . . 

Xl* 

X2S 
1 

x-1, 

. . c I 

where the X,, is the mole fraction 
different from zero. 

(10) 

of component i in phase j, and C is any number 

If N is a column matrix (s x 1) with elements ns, the number of moles of phase& 
and 0 a column matrix of zeroes, it can easily be verified from the closeness of the 
system, that the following matrix-equation holds: 

O=MdN (10 

Such a matrix-equation only possesses a non-trivial solution, if the determinant 
of M is zero. That this is indeed so in our case, can be seen by the following. 

By adding together the first s- 1 rows of M we get a new row consisting of 
elements equal to one, and by muItipIying this new row with C, we get the last row of 
RI. This means that the rows of M are not linearly independent, which again implies 
that: 

Here 

[MI =0 

The non-trivial solution thus guarantied, can now be stated: 

(12) 

(13) 

&.?‘I is the cofactor of element A&, in M. 
We see from (13) t5at the system (11) can be solved except for a constant C. This 
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uncertainty as to the absolute value of the hi’s, which is of course to be expected, is 
of no importance to us, as we are out for the ratio @S/c y),_ 

Now inserting (13) into (9) we end up with: 

or by inserting into the Maxwell relation: ’ 

(14) 

This equation, which we have called the thermodynamic equation of state for 
univariant systems, could of course have been arrived at from another point of view, 
nameiy by considering a change of the system by which dT f 0 and by accounting for 
the changes in the she’s_ 

Here it is derived from the Maxwell relation by considering a change by which 
dT=O_ 

CJAPEYROS’S EQri~-l-Ios 

Ciapeyron’s equation relates to systems composed of one component in 
equilibrium between two phases. 

The compositional matrix for such systems can be written down immediatellf: 

1 I 
M=* I I I (W 

Here we have chosen the number 1 as the elements in the last row, for 
convenience_ 

_4pplying now the thermodynamic equation of state for univariant systems (IS) 
gives: 

dP l-S,--r-S? AS 
dT= l-v,-i-vz=XG 

PRESSURE-DEPEXDEXCE 05 TEMPERATURE FOR SATWZATED SOLuTIO?J3 

(17) 

Here we shah consider a most important class of thermodynamic systems, 
nameIy saturated solutions of non-volatile solid compounds in a volatile liquid solvent 
(salts in water, ete-)_ ?-he solubihty of the volatile component in the solids is considered 
negligible- We number the phases according to: gas = 1, liquid = 2, solid 1 = 3, 
solid 2 = 4 etc., and the components: volatile camp. = I, solid 1 = 2, solid 2 = 3 etc_ 
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Now we can write up the compositional matrix: 

I x,2 0 0 ..- 0 

0 x22 1 0 . - - 0 

M=*O XJz 0 1 ___ 0 
. . . 
0 x,_,*, 0 0 ___ 1 

&I I 1 I...1 I 

(18) 

A little scrutiny will reveal that the 121 *j’s can be written (except for a factor k 1, 
which depends on the dimension of the matrix 111): 

M*’ = X12, MS2 = -1, Ais = Xzz, _W’ = XS2, etc. 

Xnserting into (15) and a little rearran~emcnt yields: 

s-1 

dP Amps - C Xi&.iS 
-= 

i=2 

dT f&J 

where the Xi’s are 

xi2 x1=- 
x*2 

s-1 

- iz xi4aLi v 

the molar ratios: 

SOLID-GAS EQUILIBRIA 

The following kinds of equilibria are very often encountered: 

A(soIid) T_ B (solid) + C@s) 

ExampIes are: 

taco, * cao+co2 

NaBr - 2H,O -L NaBr+2H,O 

cue + cu+30, 

(19) 

(20) 

These systems consist of three phases and two components. It is natural to 

choose the two components as B and C, and consider A the ‘mixture’ of B and C. 

Doing this, it is to be emphazised, that the correct way to find the number of moies of 

A is by: 

nA = n,+n, 

which of course will conllict with the usual ‘chemical’ conception of A as a component. 
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Numbering the phases: gas 1, solid B = 2 and solid A = 3, and the components 

C = I and B = 2, we can write the conpositional matrix: 

where the mole fractions are to be found according 
mixture of B and C. 

We now find the cofactors: 

and by inserting into (I 5): 

dl’ SN,k,-X&-X&c -= 
dT V*(mir)-XB v13-xC V, 

or by again ramgnizing the stoichiometry of the reaction: 

dP L-s -= 
dT &V 

to the conception of A as the 

(22) 

(9 

By realizing the validity of Maxwell’s rehtion (2) for univariant systems, for 
which it should be written: 

dP O’S 
E=zI ( > 

and by sol\ing for the differential mass-bakmces for the closed systems, we arrive at 
an equation: 

i 

which we ha\;t cakd the thermodynamic equation of state for univariant systems. 
A@ is here the cofactor of the element AI, in a matrix M that we have caIied the 
compositional matrix- This equation has as special cases, equations often encountered 
in thermodyuamics, but derived from different points of views and in different 
contexts_ 


